
PRINCIPLES OF OPERATING SYSTEMS





 Possible side effects of preventing deadlock are low device
utilization and reduce system throughput

 An alternative method for avoiding deadlocks is to require
additional information about how resources are to be required.

 With this knowledge of the complete sequence of requests and
releases for each process the system can decide for each
request whether or not the process should wait in order to
avoid possible future deadlock.

 A deadlock avoidance algorithm dynamically examines the
resource-allocation state to ensure that a circular wait
condition can never happen



 A state is safe if the system can allocate resources to each
processes in some order (safe sequence) and still avoid a
deadlock.

 If no such sequence exists, then the system state is said to be
unsafe.

 If we have prior knowledge of how resources will be
requested, it's possible to determine if we are entering an
"unsafe" state.



Possible states are:

Deadlock No forward progress can be made.

Unsafe state A state that may allow deadlock.

Safe state A state is safe if a sequence of processes exist
such that there are enough resources for the first
to finish, and as each finishes and releases its
resources there are enough for the next to finish.

The rule is simple: If a request allocation would cause an unsafe
state, do not honor that request.



 Let's assume a very simple model: each process declares its
maximum needs. In this case, algorithms exist that will ensure
that no unsafe state is reached. Maximum needs does NOT
mean it must use that many resources – simply that it might do
so under some circumstances.

 There exists a total of 12 resources. Each resource is used
exclusively by a process. The current state looks like this:

Max needs Current needs
P0 10 5
P1 4 2
P2 9 2

At T0, the system is in safe state, since <P1,P0,P2> satisfied safe
state condition

What if P2 currently ask for one more tape and has that one?




